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ABSTRACT

In this paper, we present a new discrete formulation
that maintains discrete invariance and is suitable for use
on nonorthogonal meshes. This formulation, unlike its pre-
decessors, allows us to easily use adaptive mesh refinement
to concentrate grid points where error contributions are
large (near vortex centers). In this way we reduce the
total number of grid points required to accurately cap-
ture vortex configurations and allow the possibility of solv-
ing problems previously considered intractable. To solve
these large problems, we require the memory capabilities
and computational power of state-of-the-art parallel com-
puters. To use these machines, we have developed scal-
able libraries for adaptive mesh refinement and partitioning
on two-dimensional triangular grids. This general-purpose
software uses bisection of the longest side to refine trian-
gles in which error contributions are large. These adaptive
meshes are both unstructured and dynamic, and we present
a new geometric partitioning algorithm that strives to mini-
mize communication cost by ensuring good partition aspect
ratios. We present computational results showing the effi-
ciency of these adaptive techniques for a superconductivity
application.

INTRODUCTION

The recent discovery of high-temperature superconduc-
tors has led to extensive research designed to obtain an un-
derstanding of the magnetic properties of these materials.
Practical applications of superconductors are limited pri-
marily by the relatively small value of the critical current
density which causes the material to revert back to nor-
mal conductivity. This critical current density is in turn
linked to the mixed, or vortex, state in which magnetic
flux quanta (vortices) penetrate the sample so that normal
and superconducting regions coexist. It is hoped that an
understanding of the vortex state will lead to techniques
designed to increase the critical current density and hence
allow these materials to be widely used in scientific and
industrial applications.

To study the internal structures and lattice configura-
tions of vortices in isotropic materials, we use the nondi-
mensionalized Ginzburg-Landau model. The total free en-
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ergy over the volume, €2, is given by
F = Fcond(zb) +Fkin(¢,A)+Fﬂd(A). (1)

These three terms are generally known as the condensation,
kinetic and field energy terms and are given by the formulae

2 1 4
Fcond = /(2_|¢| +5|¢| an (2)
Fan = /Q (Y +iA) 6 dQ, (3)
Fra = /K2|V><A|2dQ. (4)
Q

The variable 9 is the complex-valued order parameter and
A is the vector potential. The physical quantities of interest
are ||?, the local density of superconducting electron pairs,
and B =V x A, the magnetic field induced by the motion
of the electron pairs through the sample. The parameter &
gives the ratio of the the characteristic length over which
[4|* varies (the correlation length £), to the characteristic
length over which B varies (the penetration depth A). An
important property of the free energy functional, F', is that
its value i1s unchanged by a gauge transformation. That is,
given (¢, A) and any scalar function, y, we find that the
pair (¢', A") given by

¥ = e,

leaves the free energy invariant.

A'=A—Vy (5)

In previous work, a finite-difference discretization of the
free energy functional on a regular, orthogonal mesh was
used (Garner et al. 1992). With that approach, a high
density of grid points is required to accurately model the
vortex core. Such an approach is inefficient because the
constant density of grid points means that many super-
fluous grid points are used away from the vortex centers.
Instead, we would like to concentrate grid points near the
vortex core (where the solution changes rapidly) and use
relatively few grid points far from the vortex cores. In this
way, we reduce the total number of grid points required
to accurately model the vortex state in high-temperature
superconductors.



Toward this purpose, we have developed the algo-
rithms and software necessary to adaptively refine trian-
gular meshes on parallel computers (Freitag, Jones, and
Plassmann 1994). Triangular elements to be refined are de-
termined by a user-defined indicator function (in this case
proximity to the vortex core). Currently, the software uses
triangle bisection to refine elements and employs a modifi-
cation of Rivara’s technique (Rivara 1984) to remove non-
conforming points in the refined mesh. Though this ap-
proach is efficient in its use of mesh points, the resulting
discretized problem is both unstructured and dynamic. In
order to achieve good load balancing and performance on
parallel computers, this dynamic mesh must be partitioned
(an assignment of unknowns and elements to processors)
after each modification. We have developed a new geomet-
ric partitioning algorithm that strives to minimize both la-
tency and transmission communication costs on distributed
memory architectures.

A more subtle problem that arises from a nonorthogonal
discretization using triangular elements is that the stan-
dard finite-difference and finite-element discretizations fail
to maintain a discrete version of gauge invariance. There-
fore, we have developed a new discretization scheme for
the Ginzburg-Landau free-energy functional that maintains
gauge invariance and is suitable for use on nonorthogonal
meshes.

The remainder of the paper is organized as follows.
First, we describe the new discrete formulation and present
an asymptotic analysis showing the validity of this new for-
mulation. Then, we discuss the parallel algorithms used for
adaptive mesh refinement and partitioning and appropriate
refinement and interpolation rules for the superconductivity
problem. Next, We present computational results obtained
on the Intel DELTA located at Caltech. In the final sec-
tion, we summarize the results of this paper and offer some
remarks about future research.

DISCRETE FORMULATION FOR
NONORTHOGONAL MESHES

To accurately model the vortex core singularities in high
temperature superconductors, we would like to adaptively
refine the mesh to concentrate grid points where error con-
tributions are large. Adaptive refinement on orthogonal
meshes requires constraints be placed at nonconforming
nodes. These constraints unnecessarily increase the work
required to solve the system and complicate implementa-
tion. Thus, we choose to use triangular meshes. The ques-
tion now arises as to whether standard discretization tech-

niques maintain the important property of discrete gauge
invariance on nonorthogonal meshes. To answer this ques-
tion, let us first define the requirements for a gauge invari-
ant discretization.

Definition 1 Let ¢ and A be the discrete representations
of ¢ and A. In addition, let F' be a discrete formulation of
the free-energy functional given in Equation (1), and let

be any scalars defined on the same grid points as . Con-
sider the transformation ¥’ = Pe'X. We define discrete
gauge invariance to be the property of the discretization
scheme that allows for a corresponding transformation of

A to some A’ such that F(¢',A') = F(4, A).

Note that we do not specify the transformation of A in
this definition since that depends on a discrete represen-
tation of the gradient of y. We require only that such a
transformation exist.

It 1s easily shown that standard finite-difference and
finite-element discretization techniques do not maintain dis-
crete gauge invariance as defined above. Consider the prob-
lem in two dimensions: let ¥ = ¢ + b, A = [A;, Ay], and
the area of the domain be An. Standard finite-difference
discretization minimizes F' over the field variables a, b, A,,
and A, where all of the unknowns are associated with dis-
crete grid points. This approach can satisfy the discrete
gauge invariance definition only when the mesh is orthogo-
nal. When the mesh is not orthogonal (here we consider tri-
angular meshes), finite-difference discretizations are inap-
propriate. More appropriate in this case are finite-element
techniques, and we consider polynomial interpolation func-
tions on triangular meshes. Substituting the discrete vari-
ables into the kinetic term shows immediately that this dis-
cretization is not gauge invariant for functions of y that are
not polynomial.

Rather than assign all of the field variables to grid
points; a more natural scheme for discretizing this func-
tional is to assign the values for ¢/ at mesh vertices and the
values for A on edges between vertices. In this way, we can
adjust the discrete gauge transformation at the vertices in
¢ along each edge or link in A. Specifically, the relative
phase shift Ay between two neighboring vertices can be
subtracted from the vector potential value on the edge (a
natural discretization of subtracting the gradient of x from
A in the continuous case). This correspondence of discrete
variables works however, only if F' is invariant under this
transformation. We now present a new discrete formulation
that ensures this property.

The unknowns of the new formulation are a,b, and the

phase 8, where
0= /A - Tds

is associated with the links between the grid points. Let
the vertices of a typical triangle in the mesh be v, v,
and vz and the links opposite each vertex be 1i, 1z, and
I3, as illustrated in Figure 1. Let the area of the triangle
be Aa and the area of the domain be Ag. We give the
discretization of each of the three terms in Equation (1)
that ensures that a discrete form of gauge invariance is
preserved.

The condensation energy density in Equation (2) is eval-
uated at the vertices of the triangle and averaged to obtain



Figure 1: A typical triangular element in the mesh

a value for the entire element:
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For the field energy density, we use Green’s theorem to
obtain

Fﬂd:/ m2|VxA|2dA:j{ &’|A - T| ds,
A [eFAN

where T is the unit tangent vector such that n x T always
points into the domain. Then the discrete representation
using the field variable 6 is

2

KZe(li) . (7)

The kinetic energy density 3 is calculated at each vertex
in the triangle, and the average of these values is used to
represent the energy of the element. To maintain gauge
invariance, we use a link variable formulation similar to
that used in the standard finite-difference discretization.
First, we rotate the element so that all values of the order
parameter are in the same gauge basis. That is,

d(o2) = 9le2)e™ D P(03) = (o)l
z[J(vl) = 1/1(1)1)e‘i(9(13)+9(11>+9(12)).

In this case the gauge invariant differences along each link
are given by

K1 =(va) = (v2), Kz =1(v1) — d(v2),

Ks = ¢(v2) — ¥(v1).
The contribution to the kinetic term at the vertex v; is then
K(v1) = K313 + K315 4 21, - 1L, Ko K

The cross term 21 - 13 K3 K3 is not required for orthogonal
meshes but is incorporated here to adjust for the nonorthog-
onality of the triangle sides. Similar terms for the other two

vertices are summed to give the kinetic energy for the ele-
ment,

3
_ 1 o
Fan = 57 ZA(%). (8)

1=

We assume 2 is far from the boundary of the sample, and
we use pseudo-periodic boundary conditions to maintain
a fixed magnetic flux of 27v, where v is the number of
vortices. For a two-dimensional domain of size L, x L,

these boundary conditions are given by

2ruy

d)(L-’Ea y) = d)(oa y)e Ly 9

1/)(%, Ly) = 1/)(%, 0)

(Le,y) = 6(z,0) — %h, 8(z, Ly) =6(0,y).
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Figure 2: Asymptotic results for the condensation, ki-
netic terms and final free-energy value

We use asymptotic analysis on a sample containing two
vortices with kK = 5 to show the validity of the new discrete



model. The results obtained on uniform, orthogonal meshes
using finite differences are compared with those obtained on
uniform triangular meshes using the new discrete formula-
tion. As the element area O(h?) approaches zero, we see in
Figure 2 that condensation, kinetic, and total free-energy
terms converge linearly to the same result. The methods
approach the solution from different directions: finite differ-
ences from below for the condensation and total free-energy
terms, the new formulation from above and vice versa for
the kinetic term. The kinetic energy is highest around the
vortex core, which, for the new element technique, may be
located anywhere in the element, not just at grid points,
as is the case in finite differences. In this case the gradi-
ent term in F;pn 18 not well approximated, and the kinetic
energy term is always underestimated.

PARALLEL MESH REFINEMENT
AND PARTITIONING

The discretization presented in the preceding section is
suitable for use on nonorthogonal meshes. In particular, we
use adaptive refinement to concentrate grid points where er-
rors are large (in this case, close to the vortex core). As an
adaptive mesh tracks vortex development and movement,
maintaining mesh quality is a primary concern. As the min-
imum angle of the mesh decreases, the condition number of
the linear system grows, making solution more difficult. As
the maximum final angle of the mesh approaches =, the
interpolation error in the approximate solution increases.
Two basic approaches to refinement guarantee mesh qual-
ity: regular refinement and bisection (see Mitchell 1989
for a comprehensive review). Regular refinement divides
a triangle marked for refinement into four similar triangles
by connecting the midpoints of the three sides. Bisection
of the longest side, however, divides this triangle by con-
necting the midside of the longest side to the opposite ver-
tex. The two techniques are illustrated in Figure 3, where
the shaded triangles are those currently marked for refine-
ment. Mitchell compared these techniques and found that
the number of grid points needed to obtain a given error
bound on the final solution is essentially the same for sev-
eral test problems. Since this is the case, we choose to
implement the simpler method, bisection, in our parallel
adaptive mesh refinement software.

Adaptive mesh refinement on distributed memory archi-
tectures requires careful implementation to maintain data
coherence across the processors. For instance, as vertices
are dynamically added and deleted, all processors must
agree to a unique global list of vertices, to a list of three
unique vertices associated with any triangle, and to trian-
gle ownership if vertices of a triangle are distributed across
processors. That is, two processors cannot simultaneously
refine the same triangle, nor may neighboring triangles be
refined simultaneously, since extraneous copies of vertices
may be created across processors. We avoid these prob-
lems by refining independent sets of triangles in parallel.
These independent sets are chosen in the dual graph of the
triangular mesh (the dual graph is the graph whose ver-

A=
ALl

Figure 3: Regular refinement (top row) and bisection
of the longest side (bottom row)

tices correspond to the triangles and for which two vertices
are adjacent if their triangles share a common edge in the
mesh). Triangles that are not adjacent in the dual graph
are independent of each other and may be updated in par-
allel (see Freitag, Jones, and Plassman 1994) for a com-
plete description of the parallel algorithm). Our algorithm
terminates in a finite number of steps and has a parallel
execution time of O(log M) x Lp where My, is the number
of triangles marked for refinement and I p is the number of
levels of propagation.

As grid points are adaptively added and deleted in the
mesh, we must determine good partitionings for distributed
memory architectures. We define a good partition to be
one in which the grid points are evenly distributed to the
processors in such a way that interprocessor communica-
tion costs are minimized. We may minimize the latency
and transmission communication costs by minimizing the
number of partition neighbors and number links crossing
the partition boundary, respectively. For uniform meshes
a good partitioning of grid points may be determined «a
priori by the geometric domain. For unstructured adaptive
meshes, however, the partitioning cannot be predetermined
because it changes with each new refinement of the mesh.

Several interesting techniques are used to determine the
partitioning of an unstructured mesh. Spectral methods
(see Pothen, Simon, and Liou 1990, for example) have the
advantage of global access to information about the graph
to find good separators at the cost of eigenvalue/eigenvector
computation. Although the eigenvectors generally do not
need to be found to much accuracy, spectral methods fail to
utilize the geometric information known about the vertices
of the mesh, which may significantly decrease execution
time. Geometric information is used in bisection partition-
ing algorithms such as the orthogonal recursive bisection
(ORB) algorithm of (Berger and Bokhari 1987). This al-
gorithm makes an initial cut to divide the grid points in
half. Orthogonal cuts are then made recursively in the
new subdomains until the grid points are evenly distributed

among the processors. Although this algorithm obtains



good load balancing, it ignores the communication min-
imization problem. Long, thin partitions may be created
that have a high ratio of links crossing the partition bound-
aries to total number of links in the partition. This leads
to high ratios of communication to computation.

To address this problem, we have developed a modifica-
tion of ORB which we call the unbalanced recursive bisec-
tion (URB) algorithm. Instead of dividing the unknowns
in half, we choose the cut that minimizes partition aspect
ratio and divides the unknowns into % and LR gige
groups where n is the total number of unknowns, P is the
number of processors, and k = 1,2,..., P — 1. This algo-
rithm leads to an even distribution of grid points with more
balanced partition aspect ratios. This minimizes the com-
munication costs in two ways. First, partitions with good
aspect ratios (close to one) tend to have fewer partition
neighbors and hence fewer messages to send. Second, the
percentage of mesh links crossing the partition boundary
to the total number of links in the nearly square partitions
is small compared with the long, thin partitions generated
by the ORB algorithm. Thus, the ratios of computation to
communication are increased compared with the ORB al-
gorithm, while execution time is significantly less than for
spectral techniques.

COMPUTATIONAL RESULTS

The invariance of the free-energy functional means that
a minimizer of F'is unique only up to a gauge transforma-
tion. This degeneracy significantly complicates the com-
putation of such a minimizer. We have found that an ef-
fective approach to computing a minimizer u* = (", A*)
of the discretized free-energy functional is a damped New-
ton’s method. Each step of Newton’s method requires com-
putation of the gradient vector, VF, and Hessian matrix,
V2F for which we use the automated differentiation pack-
age ADIFOR (Bischof et al. 1991). Because of the gauge
symmetries of the problem, the Hessian is highly singular
at the solution, and we include a damping term to improve
the convergence of the method as described by (Garner et
al. 1992) . The computational kernel of this technique is
the solution of the damped Newton system-a large, sparse
linear system of equations. We do not explicitly invert this
system, but use an iterative solver to obtain an approxi-
mate (inexact) solution. The BlockSolve package devel-
oped at Argonne National Laboratory by Mark Jones and
Paul Plassmann (Jones and Plassmann 1992) is used for
this purpose.

To adaptively refine the mesh around vortex core singu-
larities, we use the following refinement rule: A triangle,

Ay, 1s refined if
min (|¢(v)]* - Aa) < er,

where the €7 is a user-defined tolerance. Suppose that the
triangle we are refining, Ay, has its longest edge opposite
v1 and has link directions as indicated in Figure 1. The
new values of a and b are obtained by linear interpolation

at the new grid point which is halfway between vo and ws.
The new phase 6., is chosen such that the magnetic flux
density is equal in the two new triangles to the original flux
density.

To demonstrate the efficiency and scalability of the re-
finement and partitioning algorithms for the superconduc-
tivity problem, we allowed problem sizes to increase pro-
portional to the number of processors used. Because our
current implementation of the adaptive refinement algo-
rithms allows data to be associated with vertices only, we
have used a preliminary formulation of the finite element
given previously. However, we feel that the computational
results presented here would be quantitatively the same for
the revised element. The results of four typical runs are
shown in Table 1 where P gives the number of processors
and F indicates the number of triangular elements in the
final solution mesh. The number of vortices in each sample
are 32, 48, 64, and 72 for 16, 32, 64, and 128 processors,
respectively. We indicate the amount of time required for
refinement and partitioning as a percentage of total solu-
tion time. We see that these operations require less than
one percent of the execution time in all cases.

Percent Percent Percent | Percent

P E Refine | Partition Setup Solution
Time Time Time Time
16 30484 229 .193 30.0 69.5
32 48416 .091 117 13.5 86.3
64 111660 .087 167 10.8 88.8
128 | 196494 .181 452 13.3 86.0

Table 1: Timing results for the superconductivity prob-
lem on 16-128 processors of the Intel DELTA

Statistics on the partitions generated by the new geo-
metric partitioning algorithm, URB, are given in Table 2.
The average aspect ratio for the partitions is less than two
in all cases, and the maximum aspect ratio is less than 3.6.
These result in a partition quotient graph whose average
degree 1s between five and six, which corresponds to an
average of five to six messages sent per processor to trans-
fer nearest neighbor information. Finally, to estimate the
amount of data that must be transferred between proces-
sors, we consider the percentage of edges that cross parti-
tion boundaries to the total number of edges in the par-
tition. This number is less than 15 percent in all cases.

The final triangular mesh of a 32 vortex problem is
shown in Figure 4. Vortex cores are indicated by the loca-
tion of the heavily refined areas of the mesh. This problem
was run on 64 processors of the Intel DELTA and partitions
are indicated by the numbered boxes. We see that the par-
titions tend to split the vortex cores to evenly distribute
grid points and are nearly square in most cases. We find
that, as we refine the mesh around vortex cores, the fact
that the kinetic term is approaching the asymptotic result
from below causes the vortex to drift toward regions con-
taining larger mesh elements. We are currently working to



Avg. Max. Avg. Max. Percent
P Graph | Graph | Aspect | Aspect Cross
Degree | Degree Ratio Ratio Edges
16 5.31 7.00 1.47 2.88 6.72
32 5.40 8.00 1.89 3.55 8.32
64 5.64 8.00 1.34 2.49 10.0
128 5.71 9.00 1.81 3.55 13.7

Table 2: Partition statistics for the superconductivity
problem on 16-128 processors of the Intel DELTA

eliminate this problem and are temporarily using Gaussian
well pinning sites to fix vortex position.
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Figure 4: Results of a sample containing 32 vortices
pinned to a square lattice configuration on 64 proces-
sors of the Intel DELTA

CONCLUDING REMARKS

In this paper, we have presented an important advance
in the numerical modeling of high-temperature supercon-
ductors: a new formulation that allows the use of adap-
tively refined meshes. Previous numerical models have been
limited by the use of orthogonal meshes needed to main-
tain gauge invariance in the discrete formulation of the
Ginzburg-Landau free-energy functional. We have devel-
oped and presented a new discrete formulation that allows
the use of nonorthogonal meshes. This formulation was val-
idated by using asymptotic analysis to compare to standard
finite difference techniques on uniform triangular meshes for
two-dimensional problems. More important, this new for-
mulation is suitable for use on adaptively refined meshes.
By concentrating grid points near the vortex core singular-
ities, we obtain a more detailed look at vortex core struc-

ture, and we significantly reduce the total number of grid
points required to obtain an accurate representation of the
lattice configuration. This formulation will in turn allow
us to study samples with very large numbers of vortices,
as well as superconducting materials in the high-x regime.
Some work remains to be done to eliminate the problem
of vortex drift, and we are currently refining the discrete
formulation to handle this situation.
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